Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

Chenodeoxycholic acid

🥰Excellent
Catalog No. T0847Cas No. 474-25-9
Alias Chenodiol, CDCA

Chenodeoxycholic acid (CDCA) is a bile acid, usually conjugated with either glycine or taurine. It acts as a detergent to solubilize fats for intestinal absorption and is reabsorbed by the small intestine. It is used as cholagogue, a choleretic laxative, and to prevent or dissolve gallstones.

Chenodeoxycholic acid

Chenodeoxycholic acid

🥰Excellent
Purity: 99.97%
Catalog No. T0847Alias Chenodiol, CDCACas No. 474-25-9
Chenodeoxycholic acid (CDCA) is a bile acid, usually conjugated with either glycine or taurine. It acts as a detergent to solubilize fats for intestinal absorption and is reabsorbed by the small intestine. It is used as cholagogue, a choleretic laxative, and to prevent or dissolve gallstones.
Pack SizePriceAvailabilityQuantity
100 mg$55In Stock
1 mL x 10 mM (in DMSO)$50In Stock
Bulk & Custom
Add to Cart
Questions
View More

Related Compound Libraries of "Chenodeoxycholic acid"

Select Batch
Purity:99.97%
Contact us for more batch information
Resource Download
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.

Product Introduction

Bioactivity
Description
Chenodeoxycholic acid (CDCA) is a bile acid, usually conjugated with either glycine or taurine. It acts as a detergent to solubilize fats for intestinal absorption and is reabsorbed by the small intestine. It is used as cholagogue, a choleretic laxative, and to prevent or dissolve gallstones.
In vitro
Chenodeoxycholic acid (CDCA) and Deoxycholic acid (DCA) both inhibits 11 beta HSD2 with IC(50) values of 22 mM and 38 mM, respectively that causes cortisol-dependent nuclear translocation and increases transcriptional activity of mineralocorticoid receptor (MR). [1] Chenodeoxycholic acid is able to stimulate Ishikawa cell growth by inducing a significant increase in Cyclin D1 protein and mRNA expression through the activation of the membrane G protein-coupled receptor (TGR5)-dependent pathway. [2] Chenodeoxycholic acid (CDCA) induces LDL receptor mRNA levels approximately 4 fold and mRNA levels for HMG-CoA reductase and HMG-CoA synthase two fold in a cultured human hepatoblastoma cell line, Hep G2. [3] Chenodeoxycholic acid-induced Isc is inhibited (≥67%) by Bumetanide, BaCl2, and the cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTRinh-172. Chenodeoxycholic acid-stimulated Isc is decreased 43% by the adenylate cyclase inhibitor MDL12330A and Chenodeoxycholic acid increases intracellular cAMP concentration. [4] Chenodeoxycholic acid treatment activates C/EBPβ, as shown by increases in its phosphorylation, nuclear accumulation, and expression in HepG2 cells. Chenodeoxycholic acid enhances luciferase gene transcription from the construct containing -1.65-kb GSTA2 promoter, which contains C/EBP response element (pGL-1651). Chenodeoxycholic acid treatment activates AMP-activated protein kinase (AMPK), which leads to extracellular signal-regulated kinase 1/2 (ERK1/2) activation, as evidenced by the results of experiments using a dominant-negative mutant of AMPKα and chemical inhibitor. [5]
Kinase Assay
Briefly, transfected HEK-293 cells, incubated in charcoal-treated Dulbecco's modified Eagle's medium for 24 h, are washed once with Hanks' solution and resuspended in a buffer containing 100 mM NaCl, 1 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 250 mMsucrose, 20 mM Tris-HCl, pH 7.4. Cells are lysed by freezing in liquid nitrogen. Dehydrogenase activity is measured in a final volume of 20 μL containing the appropriate concentration of bile acid, 30 nCi of [3H]cortisol, and unlabeled cortisol to a final concentrations of 50 nM. The reaction is started by mixing cell lysate with the reaction mixture. Alternatively, endoplasmic reticulum microsomes are prepared from transfected HEK-293 cells and incubated with reaction mixture containing various concentrations of cortisol and CDCA. Incubation proceeded for 20 min, and the conversion of cortisol to cortisone is determined by thin layer chromatography (TLC). Because of the inaccuracy of the TLC method at low conversion rates and the end-product inhibition of 11βHSD2 at conversion rates higher than 60-70%, only conversion rates between 10 and 60% are considered for calculation. The inhibitory constant IC50 is evaluated using the curve-fitting program. Results are expressed as means±S.E. and consist of at least four independent measurements.
Cell Research
The cell viability is analyzed by incubating transfected HEK-293 cells and CHO cells for 1 h with the corresponding concentration of bile acid and staining with trypan blue. The toxicity of bile acids is analyzed using the tetrazolium salt MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) according to the cell proliferation kit I. No significant differences between control and bile acid-treated cells are obtained in both tests.
AliasChenodiol, CDCA
Chemical Properties
Molecular Weight392.57
FormulaC24H40O4
Cas No.474-25-9
Smiles[H][C@@]12CC[C@H]([C@H](C)CCC(O)=O)[C@@]1(C)CC[C@@]1([H])[C@@]2([H])[C@H](O)CC2C[C@H](O)CC[C@]12C
Relative Density.1.129 g/cm3.
Storage & Solubility Information
StoragePowder: -20°C for 3 years | In solvent: -80°C for 1 year | Shipping with blue ice.
Solubility Information
Ethanol: 79 mg/mL (201.23 mM)
DMSO: 40 mg/mL (101.89 mM), Sonication is recommended.
H2O: < 1 mg/mL (insoluble or slightly soluble)
Solution Preparation Table
DMSO/Ethanol
1mg5mg10mg50mg
1 mM2.5473 mL12.7366 mL25.4732 mL127.3658 mL
5 mM0.5095 mL2.5473 mL5.0946 mL25.4732 mL
10 mM0.2547 mL1.2737 mL2.5473 mL12.7366 mL
20 mM0.1274 mL0.6368 mL1.2737 mL6.3683 mL
50 mM0.0509 mL0.2547 mL0.5095 mL2.5473 mL
100 mM0.0255 mL0.1274 mL0.2547 mL1.2737 mL

Calculator

  • Molarity Calculator
  • Dilution Calculator
  • Reconstitution Calculator
  • Molecular Weight Calculator

In Vivo Formulation Calculator (Clear solution)

Please enter your animal experiment information in the following box and click Calculate to obtain the mother liquor preparation method and in vivo formula preparation method:
TargetMol | Animal experimentsFor example, your dosage is 10 mg/kg Each animal weighs 20 g, and the dosage volume is 100 μL . TargetMol | Animal experiments A total of 10 animals were administered, and the formula you used is 5% TargetMol | reagent DMSO+30% PEG300+5% Tween 80+60% ddH2O. So your working solution concentration is 2 mg/mL。
Mother liquor preparation method: 2 mg of drug dissolved in 50 μL DMSOTargetMol | reagent (mother liquor concentration of 40 mg/mL), if you need to configure a concentration that exceeds the solubility of the product, please contact us first.
Preparation method for in vivo formula: Take 50 μL DMSOTargetMol | reagent main solution, add 300 μLPEG300TargetMol | reagent mix well and clarify, then add 50 more μL Tween 80, mix well and clarify, then add 600 more μLddH2OTargetMol | reagent mix well and clarify
For Reference Only. Please develop an appropriate dissolution method based on your laboratory animals and route of administration.
1 Enter information below:
mg/kg
g
μL
2 Enter the in vivo formulation:
% DMSO
%
%Tween 80
%ddH2O

Dose Conversion

You can also refer to dose conversion for different animals. More Dose Conversion

Tech Support

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc

Keywords

Related Tags: buy Chenodeoxycholic acid | purchase Chenodeoxycholic acid | Chenodeoxycholic acid cost | order Chenodeoxycholic acid | Chenodeoxycholic acid chemical structure | Chenodeoxycholic acid in vitro | Chenodeoxycholic acid formula | Chenodeoxycholic acid molecular weight